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ABSTRACT 

Monopole catalysis of proton decay is examined in the 

so1iton picture and monopole-soliton scattering is studied 

numerically by constructing time histories of scattering 

events. We study the effects of finite fermion masses and 

the coupling constant dependence of the interactions in both 

an SU(2) model and the grand unified SU(5) model. All 

relevant Abelian Coulomb energies, (including the 

electroweak energy at distances less than l/MZ), are 

included and we find that the qualitative nature of a 

scattering process is unchanged by the inclusion of these 

interactions. 
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I. Introduction 

Magnetic monopoles have fascinated theorists for over 

fifty years, al though their observation remains elusive. 

Recently, Rubakov’ and Callan 2 have demonstrated that in 

grand unified theories, magnetic monopoles have the 

surprising property that they catalyse proton decay at 

strong interaction rates. Many other authors314 have 

extended their work, although unfortunately little 

quantitative work has been done. In this paper, we attempt 

to fill a part of this gap and study proton-monopole 

scattering numerically. We gain a physical understanding of 

the catalysis mechanism by constructing time histories of 

scattering processes. 

Rubakov and Callan have approached the problem of 

monopole-fermion interactions in two different ways, both of 

which involve the scattering of a fermionic J=O partial wave 

from a ‘t Hooft-Polyakov monopole. In Rubakov’s approach, 

the problem reduces to a massless two-dimensional Schwinger 

model, which is exactly solvable. In this approach, 

however, the effect of a finite fermion mass is unclear. In 

Callan’s approach, the theory is written as an equivalent 

boson theory and fermions are written as soliton states. 

This picture is most suitable for constructing the time 

history of a baryon number violating process and to see the 

effect of finite fermion masses. It is this bosonized 

version of the fermion-monopole dynamics which we will use 
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in this paper. We emphasize however that Rubakov’s and 

Callan’s work describes the same physics and a combination 

of concepts from both approaches can be extremely useful. 

Most of our results are obtained for the SU(2) model 

studied by Rubakov and Callan. We introduce this model in 

Section II. In Section III, we formulate the discrete 

version of the model which we use for our numerical 

analysis, with special attention to the region near the 

monopole core. 

In Section IV, we discuss the kinematics of the 

problem. This results in a list of all possible final 

states for a given initial state. In the massless case, 

there is at most one final state per initial state and the 

problem is completely determined. For non-zero f ermion 

masses, additional processes are allowed. The simplest of 

these are helicity-flip scattering processes, which do not 

lead to a violation of any charge. 

The competition between different final states can only 

be studied numerically and this is one of the purposes of 

this paper. Starting with a set of solitons moving toward 

the monopole, we integrate the equations of motion to find 

the complete time evolution and the final state. The effect 

of the boundary conditions and the Adler-Bell Jackiw 

anomaly 5 become transparent by studying the behavior of the 

boson fields near the core. 
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Our numerical results are presented in Section V. For 

the most interesting initial states, we show under which 

conditions the baryon number violating processes dominate 

over the processes with only helicity flip. We investigate 

the dependence on the velocity of the incoming solitons, 

their spatial separation, and the gauge coupling constant. 

In Section VI, we address the question of whether the 

SU(2) model adequately describes proton decay catalysis by 

su(5)6 monopoles. We consider the effects of Abelian color 

and electromagnetic interactions not yet included in the 

SU(2) model and find that their effect is unimportant. We 

also include the effects of the Z. electrostatic energy for 

distances less than l/MZ from the monopole.’ We discuss in 

Section VII the effects of including an extra heavy, 

generation of fermions. In the Appendix, we derive the 

effective Lagrangian for the SLJ(5) model, with particular 

emphasis on the Coulomb interaction terms. 

II. The SU(2) Model 

In this section, we study an SU(2) model in which an 

SU(2) gauge field is coupled to an I=1 Higgs field and an 

even number N f Of left-handed Wey1 spinors. The Higgs 

potential is arranged in such a way that the symmetry is 

broken to U(l), resulting in a monopole which is coupled to 

the fermions in the doublet representation of the SU(2) 

group corresponding to the monopole, (which has generators 

?). We denote the spinors which couple to the monopole by, 
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*E,i 

*iL = 

[ 1 
*L,i i-l ,N f ’ (2.1) 

where + and - indicate the T 3-charge of the particle. (Ill 

this section vvcharget’ refers to this T 3-charge.) In the J=O 

partial wave, the upper components *;,i and their 

anti-particles, *R~ i are only allowed as incoming states, 

while the lower components $i.i and IJI~, i are only allowed as 

outgoing states. 

We will study this system with nonvanishing fermion 

masses. In principle, a mass term can be constructed by 

pairing the upper 

component of a 

unified models, 3 

generation is 

component of a doublet bi with the lower 

doublet Jli,. In the SU(5) and SO(10) grand 

the doublet assignment for the first 

[;;I, [:$ [:;lL [jL (2.2) 

(Note that the T3 charge has the opposite sign from the 

electromagnetic charge.) This has the property that if 4~: i 

is paired with $I;,~,, then JIL i is paired with $i,i,. This 

is not necessarily true in general, but we will assume this 

in the rest of the paper. The mass terms combine the Nf 

doublets in l/2 Nf pairs. We denote each pair generically 

as I 
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aL L- bL (2.3) 

The bosonization of the spherically symmetric sector of 

the theory can be done in two ways: one which respects the 

pairing of the fermions in SU(2) 
T3 

eigenstates and one 

which respects the pairing into mass eigenstates. The two 

bosonizations are connected by a canonical transformation. 2 

In the second bosonized form, each mass-eigenstate is 

represented by a field, ($a and ‘b for Eq. (2.3)). The 

pairing into doublets is represented by a boundary condition 

at the origin. This boundary condition is all that remains 

Of the non-Abelian properties of the fields in the core of 

the monopole in the limit of vanishing core Size. 

The second bosonization is the most convenient one for 

the soliton picture and will be used in the rest of this 

paper. 

III. The Discrete Lagrangian 

To study the problem numerically we discretize the 

r-dependence of the Lagrangian. In the continuum limit, the 

Lagrangian is, (see Ref. 2 and the Appendix): 
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Nf 
L = Jrdr [l/2 1 (6; - (5 - m~cos(2J;i~i)l 

0 i=l 

N f 
- -$ ( 1 q2 I 

i=l 

for Nf flavors of Weyl spinors in the original fermlon 

Lagrangian. (The “dot”, (“prime”), denotes differentiation 

with respect to t,(r)). The constant F is related to the 

gauge coupling, g, as follows: 

Fd- 
1 6rr2 

The coefficient mi is related to the fermion mass. a 

The boundary conditions on the bosons at r=O are 

$i(o) = bi+l(o) 

((0) = -+;+,co, 
for odd i. 

(3.2) 

We need a discrete version of L which implements the 

boundary condition. For this purpose we use the following 

Lagrangian, 
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L = .---I 
Nf 
1 

2a2 i odd CC@,0 - “J2 + (rniO - @i+,,,)21 

N-l Nf 
+ I: 

j=l 
1 (+i 

i=l 

[l/2 

2 
j - 0 i,j+l) 

‘2 
@ij 

- rn: cos (2J;i@ij)l 

-f F 
Nf 

j=l 2j2a2 
( 1 tJij12 3 

i=l 
(3.4) 

where @ij=@i(ja), N is the number of lattice points for the 

r variable and a is the lattice spacing. 

Since there is no canonical momentum for @io, we obtain 

a constraint equation for that variable, 

'i0 - +i, = -(4io - @i+1,1 1 (3.5) 

This is the second equation in Eq. (3.3). The first is 

satisfied by construction. We impose no boundary condition 

at r=Na, since we will aSsume that all fields stay in one of 

the vacua of the sine-Gordon theory for all times at large 

r. 

Our boundary conditions at r=O differ from those 

9 proposed recently by Callan. He chooses to enforce charge 

(T3) conservation by a boundary condition f$iO = 0. In our 

case, such a condition is enforced dynamically on the fields 

at r=a. For sufficiently small a, the combination lbi, must 
i 

be very small to keep the total energy finite. Then 

Eq. (3.3) leads to 
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(3.6) 

Thus in the continuum 

conditions are equivalent. 

IV. Allowed Processes 

limit the different boundary 

In this section we will investigate which final states 

can be obtained from a given initial state. (Some of the 

material in this section can be found in Refs. 1, 2, and 

14). Initial states are defined at r=- and t=-m. In that 

limit the Coulomb term in Eq. (3.1) can be ignored and the 

solutions are just the familiar sine-Gordon solitons; 

ei = $ tan-‘(exp(AI)) 
II 

(4.1) 

where 

2J;;mi 
Ai = m (r-r:) . 

(rp is the position of ei at t=-* and Bi is its velocity). 

The charges, qi, and helicity, Ai, of a soliton can be 

determined from the correspondence with the f ermion 

Lagrangian; 
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qi = +’ @i(r) dr. (4.2) 
II 

A. is -1 (1) for an incoming (outgoing) positively 

(negatively) charged soliton. Note that the charge is 

normalized to one. We summarize the possible asymptotic 

states in Figure 1. 

A. Charge Conservation 

In the absence of the Coulomb term the time evolution 

of the solitons can be solved exactly until they reach r=O. 

The solution is simply Eq.(4.1) with P replaced by r-Bt, 

(where 6 is positive for a soliton moving toward the 

monopole). In fact even the behavior near r=O is exactly 

solvable. This becomes clear when we define a boson field, 

4i(r) r>O 
Oi(r) = 

4i+l C-r) r<O for i odd. 
(4.3) 

This automatically respects the boundary conditions. Now we 

have a sine-Gordon Lagrangian for all r. 

A soliton ei coming towards the monopole from r =m will 

pass through the origin unchanged and continue to move 

towards r=--. According to Eq. (4.3), a soliton on the 

negative r-axis should be interpreted as a ei+, type 

soliton, which is obtained by a reflection with respect to 

the point r-0. Therefore we conclude that the boundary 
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conditions alone allow the process ei + ei+, , for i odd. 

In f ermion language, this process corresponds to, 

+ 

aL + bL ’ (4.4) 

(we note that this process will NOT occ”r when the gauge 

coupling constant is non-zero). 

This is the process discussed in Ref. 10 and more 

recently in Ref. 11. It Is a consequence of the fact that 

the heliclty operator commutes with the Hamiltonian for a 

gauge theory monopole, ( even inside the core and even for 

non-zero fermion mass), as long as only the magnetic 

(monopol e) field is taken into account. In soliton 

language, this corresponds to the fact that in the absence 

of a Coulomb term a soliton moves with constant velocity, 

without changing its shape. 

In the presence of the Coulomb term, the situation Is 

completely different. In that case, a process like 

Eq. (4. 4) would leave a T 
3 

charge on the monopol e core, 

changing the monopole into a dyon, and the Coulomb energy 

due to that charge is inversely proportional to the size of 

the core. This would violate conservation of energy! 

Therefore T 
3 

charge will be conserved wl thin the f erml on 

sector alone, as long as the kinetic energy of the fermions 

is much less than the excitation energy of a dyon. Charge 

(non) conservation In the field of a monopole has been the 

subject of many recent papers. 12 
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B. The Selection Rule in the Massless Case 

The allowed processes can now be derived using charge 

conservation and the peculiar kinematics of J=O fermions in 

the monopole. According to Fig. 1, a set of incoming 

f ermions with total charge Q must have total helicity -Q. 

(Here Q is the sum of the qi’s, defined in Eq. (4.2)). 

Since charge is conserved we conclude, again using 

Fig. 1, that the total outgoing helicity is +Q. Therefore 

any process with total incoming charge Q must have a total 

change in helicity equal to 29. This is true in the massive 

as well as in the massless case. 

In the massless case, the only source of helicity 

violation is the Adler-Bell-Jackiw anomaly, which requires a 

very specific change in helicity, 6H = nNf. for any integer 

n. (The anomaly manifests itself through the Coulomb term 

because all helicity changing processes disappear if that 

term is removed). Therefore we obtain the selection rule, 

Q = l/2 n Nf , (4.5) 

where Q is the total incoming charge and Nf the number of 

SU(2) Weyl- doublets. 

Since there has been much confusion about the role of 

anomalies, some clarification may be helpful. We 

distinguish two anomalies: 

(1.) It is well known that baryon number has an anomaly 
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with respect to the weak interaction gauge group SU(2)L. The 

kind of proton decay discussed in Refs. 1 and 2 is however 

not due to this anomaly. Effects of this sort should vanish 

ifM +- w and therefore we expect such effects to be small. 

(2.) Chiral fermion number has an anomaly with respect to 

SU(2jM. the subgroup in which the monopole is embedded. 

Rubakov uses this anomaly to explain the presence of 

chirality non-conserving processes. In a theory with 

massless fermions, this anomaly is the only source of 

chirality violation. Baryon number does not have an anomaly 

with respect to the weak interaction gauge group SU(2)M. The 

source of B-violation is not an anomaly, but the fact that 

in the core f ermions with different B-eigenvalues are 

combined into doublets. This is a consequence of the grand 

unification. 

C. Helicity Conserving Processes 

The simplest case to discuss is n=O. In that case the 

total incoming charge is zero and helicity is conserved. 

(Such processes were first mentioned in Ref. 13.) In one 

special case, this problem is exactly solvable: if at some 

time t C all solitons have equal position and velocity. It. 

is convenient to consider the linear combination o(r)=%pi(r) 

and the Nf-1 combinations of fields orthogonal to it. Of 

these new fields, only 0 is sensitive to the Coulomb term. 
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But since a(r,t,) = a(r,tO) = 0, o(r,t) = 0 for all t. This 

implies that the Coulomb energy plays no role in the problem 

and we have a Situation which we have already discussed. We 

conclude that such a process will be a combination of 

processes like that given in Eq. (4.4). in such a way that 

the total charge in the initial and final states vanishes. 

There is another simple way to arrive at the same 

conclusion and that is the observation that in the absence 

of a Coulomb term and a mass term, the N f flavors of SU(2) 

doublets in the original theory are completely decoupled 

from each other. Therefore each incoming fermion can only 

go to an outgoing fermion of the same doublet. This allows 

us to consider the case where both an “a” soliton and It ,, It 

(anti) soli ton are approaching the monopole. This 

corresponds, in terms of the field e defined in Eq. (4.3), 

to two solitons coming from r=- and r=-= and scattering at 

r=O. 

The possible processes of this type are, 

+ + - - 
aL + bL -t aL + bL (4.6) 

+ - - + . 
aL + bR + aL + bR 

(4.7) 

(Process (4.6) can obviously only occur if there is an 

(almost) simultaneous other process with a compensating 

change in electric charge). a; and 
+ 

bL are in different 

doublets; bi is the anti-particle of b: and hence a: and bi 

are also in different doublets. Thus Eqs. (4.6) and (4.7) 
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are just the superposition of two processes like Eq. (4.4). 

The same results can be obtained using the we11 known 

scattering behaviour of sine-Gordon solitons. 

D. Helicity Violating Processes in the Massless Case 

The simplest helicity violating process has n=l, (see 

Eq. (4.5)), and total incoming charge Q = l/2 Nf. This 

process can only OOCUr because of the presence of the 

anomaly and its selection rules can be obtained by means of 

a simple extension of Rubakov’s calculation’ to an arbitrary 

number of flavors, (each Weyl doublet of fermions defines a 

flavor). 

If for simplicity we allow at most one incoming soliton 

per flavor, then we obtain the following basic processes in 

the zero mass limit: 

+ + 
*Li + tJRj + dJLi + *Rj (4.8) 

+ + + + 
*Li, + - . . JILim + *Rj, + . . . + dJRjm I (4.9) 

where m = l/2 Nf and i a + j, for any a or b. (Hence 

ii...im, ji...j m are just a permutation of the Nf flavor 

indices.) The first process conserves helicity, the second 

is the simplest helicity violating process generated by the 

anomaly. A*Y combination of these processes is of course 

also allowed. 
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E. conservation Laws 

The conservation 1aWS for these processes have been 

discussed recently by Sen.14 Hi3 conclusion is that any 

charge Y is conserved if it satisfies the following 

requirements, 

(a) CT,, Y] = CL i ca3b Tb 

and 

(b) Tr (Ta Tb Y) = 0 I 

(4.10a) 

(4.10b) 

where ? is an SU(2) generator and a an arbitrary real 

number. Obviously, 
T3 

satisfies these requirement3 and we 

have already seen that T3 is conserved. 

The validity of Eq. (4.10) can be demonstrated a3 

follows. For any charge other than T 
3’ 

Eq. (4.10) implies, 

Y=Y-aT 
3 

with [Tat ;1=0 . (4.11) 

Therefore the upper and lower component of each doublet have 

the same Y, and hence ; is conserved in proce33 (4.8). The 
f,. 

second condition, Eq. (4.10b), implies that I Y = 0, (i.e. 
i=l 

; has no anomaly with respect to SU(2)), and hence it is 

also conserved in process (4.6). Therefore Y and Y are 

conserved in every process. 



-17- FERMILAB-Pub-83/43-THY 

Conditions (4.10a) and (4.10b) are satisfied in the 

standard SU(5) model for a11 Abelian gauged symmetries, 

(color isospin, color hypercharge, electric charge, and the 

weak Zo-charge), and for B-L. (Baryon number of course does 

not satisfy Eq. (4.10)). Condition (4.10b) must be 

satisfied for any gauged symmetry, because of the absence of 

anomalies, but there may exist rather contrived models in 

which Eq (4.10a) is not satisfied for 30me gauge charge. In 

that case the Coulomb energy of such a charge has to be 

included to enforce conservation of this charge. 

F. The Allowed Processes for Non-Zero Mass 

To obtain the complete set of allowed processes in the 

massive ca3e we have to include the basic helicity flip 

process allowed by the mass term, 

+ + 
*Li +*Fti . (4.12) 

This interaction conserves all Abelian charges as long as 

they are vectorial. (The Zo- charge is not conserved by a 

process such a.3 Eq. (4.12). We will discuss this process in 

detail in Section VI.) 

In the massive Case the allowed processes can be 

completely specified by requiring the conservation of 

l/2 Nf + 1 charges. These charges can be chosen to be 
T3 

plus a vectorial flavor charge assigned to each of the 

1’2 Nf pair3 of doublets. In the notation of Eq. (2.3), 
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+ 

[- :1 
+ 

aL has charge +l, 
bL 

bL i-1 

has charge -1. 

aL 

Conservation of these l/2 N f + 1 charges is a necessary 

condition; whether it is sufficient will be checked in 

Section V. 

For Nf = 2, the only processes that can occur for any 

number of incoming particles are uninteresting ones. They 

can all be generated by the mass term3 alone. The simplest 

examples are, 

+ + 
aL + aR 

+ + + + 
aL +b +aN+bE L 

aL + + b; + aN + + b; (4.13) 

The anomaly contribute3 to the same helicity flip amplitude 

as the ma33 term and it is not very relevant which of the 

two is at work. 

For Nf = 4, corresponding to one generation of fermions 

in standard models, the situation is more interesting. In 

Table 1, we list the processes with one or two incoming 

solitons and at most one soliton per flavor. In general 

there is more than one final state per initial state. Among 

the final states there is always one which doe3 not violate 

any charge except helicity. Whether such processes dominate 
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the other one3, (which all lead to violation of baryon 

number in grand unified models), is a dynamical question 

which we will study in the next 3eCtiOn. 

V. Numerical Results for the SU(2) Model 

The results we give in this section are obtained with 

the Lagrangian of Eq. (3.4) for Nf = 4. The Weyl doublets 

are taken to be, 

n, [::I, [::I, [“:I,. (5.1) 

where (a,b) and (c,d) satisfy the boundary conditions of 

Eq.(3.3). The result3 depend on the following parameters, 

-the initial positions r" and velocities B 
0 of the 

incoming solitons, 

-the masses of each of the four soliton types, 

-the coupling constant F, 

-the number of points, N, and the total length, R, 

and 

-the time increments At used to solve the equation3 Of 

motion. 

All results satisfy an obvious scaling law--they are 

invariant under the transformation, 
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1 1 
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for all i 

R + n R 

r" 0 
+ n r 

80 fixed 

At + n At , 

where N is fixed. This invariance is exact even for finite 

a and At. Unless otherwise specified, we choose the 

following standard set of parameters: mi = 1 for all i, 

(compared to the length scale shown on the r-axis of the 

plot), F = .l, N = 100, At=.OOj, and R is the maximum length 

shown in the plots. 

The parameter At must be 3"ffiCiently small to prevent 

numerical fluctuations. The advantage of the Lagrangian of 

Eq. (3.4) and in particular the fact that the boundary 

conditions follow from the equations of motion is that the 

total energy is exactly conserved for non-zero a and for 

At + 0. Therefore unphysical, numerical fluctuations due to 

a value of At which is to0 large can easily be recognized 

since they lead to non-conservat ion of energ Y. In practice, 

requiring that energy conservat ion is sat isfied with an 

accuracy better than . 1% turns out to be sufficient to make 

all results virtually independent of At. Such an accuracy 

could be obtained rather easily. 
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A. One Incoming Soliton 

If the masses of the four flavors are chosen to be 

equal, the helicity flip process at + ai is energetically 

more favorable than a 
+ 
L + bL + c 

+ + 
R+d R ’ which require3 the 

creation of two additional solitons. One can try to 

overcome this barrier by giving the incoming soliton a large 

kinetic energy , but we have not been able to produce the 

second possible final state in that way. What we find is 

the appearance of “half-solitons” which, according to 

Ref3.(9) and (14) should occur in the massless (or extremely 

relativistic) limit. This final state is shown in Fig. 2. 

These half-solitons, after they have moved some distance 

from the origin, 
+ 

away choose to become an a R soliton rather 

than three solitons. (Of cour3e, half-solitons can not move 

out to infinity since that would cost an infinite amount of 

potential energy), 

When the three particle final state is made more 

attractive by lowering the masses of b,c, and d with respect 

to a, the third process does occur. We have studied this 

for m b c d”‘5 =m =m and ma=.5 “, with an incoming “a” soliton 

with r”=2. A3 is shown in Figure 3, the transition between 

the two processes occurs slightly above the kinematic 

threshold, 5 = 
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B. Incoming a; + b: 

This is the process that ha3 bee" most extensively 

discussed in the literature. The competition is here 

between a process that is due to the mas.3 term, a; + bL+ + a,' 

+ b 
+ 
H, and a process that is possible because of the anomaly,, 

+ + 
aL + bL + c ; + d;. Since the mass term should become 

unimportant if the 301iton is extremely relativistic, we 

expect the anomaly induced process to dominate at 

sufficiently large velocities. We find indeed that a 

threshold velocity, Bth , exists above which the second 

process, (corresponding to proton decay in the SU(5) model), 

and below which the first process, (helicity flip), occurs. 

This threshold depends on many parameters: the relative 

velocity and distance of the two incoming solitons at the 

initial time, the distance from the origin, the masses, and 

the strength of the Coulomb interaction. I" Fig. 4, we show 

an example of a process that is above threshold, for a 

rather arbitrary choice of initial conditions. 

In addition to a dependence on physical parameters, gth 

depends also on numerical approximations. The main effect 

is the discreteness of the r variable. Since we do not 

continue the Coulomb term to r = 0, the maximum of the 

Coulomb term is finite even if the sum of all fields at r = 

0 is different from zero. Near the origin, the Coulomb term 

grows a3 N2, where N is the number of lattice points for a 

given length R. The threshold velocity will therefore grow 
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with N, and we have to investigate whether for N •t ml 
'th 

approaches 1 or a value smaller than 1. (If the limit is 1, 

we would conclude that anomaly induced proton decay like 

processes occur only in the massless theory and vanish for 

any non-zero mass. 15) 

The dependence of Eth on the number of lattice point3 

is shown in Fig 5. The asymptotic value is clearly smaller 

than 1. The approach to the asymptotic value appear3 to be 

exponential a3 a function of /i?. The threshold velocities 

are obtained with an initial state consisting of two 

solitons at r" =2. The threshold increases somewhat for 

larger r 0 and ha3 a very strong dependence on the initial 

separation between the two solitons. Clearly, for large 

separation the 301itons will scatter independently and 

choose the helicity-flip mode. This is shown in Fig. 6, a 

plot of 'th versus 6r, the spatial separation of the 

incoming solitons, (both solitons have the 3ame initial 

velocity and their initial distances to the origin are 2 and 

2+6r). Clearly, the separation has to be less than roughly 

the inverse ma33 of the 3olito"3 for the baryon number 

violating process to occur. 

Finally, the threshold velocity depend3 on the strength 

of the coupling, F. This dependence is shown in Fig. 7. A 

realistic value for F (=g2/16n2) would be -10-3. To approach 

that value in a realistic way we have to make sure that Erc 

< F, where r c is the core size and E the energy. of the 

incoming solitons. If this condition is not satisfied, it 
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is possible to excite dyon states. For SU(5) monopoles, Erc 

<< F for any reasonable value of E. In our case, however, 

r c is effectively equal to the parameter a, the size of a 

lattice cell. It is impossible to make a extremely small 

and therefore F must be restricted to value3 greater than 

-.05. 

Although Fig. 7 gives a rough idea about the behavior 

of ‘th for small F, the small coupling limit, (F-10p3), is 

numerically inaccessible. The threshold velocities in this 

figure are obtained with N-100; Fig. 5 shows that the 

result3 for small F are more sensitive to an increase in N 

than the one3 for large F. In particular, the threshold 

velocity for F = .05 increase3 to a much larger value, 

(between .5 and . 6) if N approaches the continuum limit. 

C. Incoming a; + ci 

This process is very simple to describe if aL 
+ 

and CR 

are always at the same point. Then the Coulomb energy doe3 

not contribute and the discussion of Section 1V.B applies. 

We conclude that in this case the final state will alWay3 be 

- + 
bL + dB. When there is a finite distance in phase space 

between a; and c- L, the Coulomb energy can have an effect and 

force the final state to be ai + CL. This will clearly 

happen if the two incoming state3 have a large difference in 

their arrival time at the monopole core. An example of the 

+ 
process aL + CR + bL + di is shown in Fig. 8. This process 

occurs almost independently of velocity if the initial 
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separation between the solitons is less than -.8. For larger 

separations the helicity flip process occurs. 

D. Incoming a; + c: 

Since there is only one allowed final state this 

process is all ready completely described by the argument3 

in Section 1V.F. 

E. Incoming a; + bi 

There is no new physic3 here: the possible final states 

are trivial combination3 of the ones discussed in section 

V.A. The processes with double solitons in the final state, 

(see Table l), can be obtained by separating the arrival 

time3 of solitons a; and bi and choosing appropriate masses. 

VI. The SU(5) Model 

We consider the minimal SU(5) GUT with one family of 

fermions in the [?I and Cl01 representation3 and Higgs 

field3 in the C241 and [51 representations. The vacuum 

expectation value of the [24] break3 the symmetry to SU(3) X 

SU(2) x U(1) at a scale MX - 1o14 GeV, thus producing 

monopoles with a ma33 near MX/aCUT. The embedding of the 

monopole into the SU(5) group and the transformation Of the 

fermions under the SU(2) group corresponding to the monopole 

are described in the Appendix. 
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A3 in the SU(2) model of Section II, each Dirac fermion 

is replaced by a bosonic field which satisfies the boundary 

condition, 

@,(r=O) = @d (r-=0) 
3 

$i(r=O) = -Gd'(r=O) 
3 

’ bu (r-O)= 
1 

0, 2(r=o) $U ‘(rd))= - 4 u2(r=o) * (6.1) 
1 

The derivation of the effective boson Lagrangian and 

the inclusion of the Coulomb interaction terms requires more 

careful thought than in the SU(2) model. In the Appendix, 

we discuss in detail the bosonization of the SU(5) theory 

and the construction of the effective Lagrangian. We 

include a discussion of turning on the electroweak 

interaction3 at distances less than l/MZ from the monopole. 

At distances greater than l/MZ from the monopole, the 

gauge symmetry is SU(3) x U(l)em. As in Section III, we 

discretize the Lagrangian and also enforce the boundary 

condition3 of Eq. (6.1). The effective Lagrangian is then, 

(see Eqs. (3.4) and (Al7)), 

L1 
= L - F --AL-- cc+ -e2j) 

2 

j=l 32n2j2a2 'J 

+l/2(~3j-~4j)21 
(6.2) 

where 
@l = $J 

Ul 
, +2 = $u , $3 = $d I +4 = 6,, and g i= the 

2 3 
SU(5) gauge coupling constant. (Note that we neglect all 
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renormalization group scaling of the gauge coupling 

constants). 

At distances less than l/MZ from the monopole, the 

effective gauge theory is SU(3) x SU(21L x U(1) and is 

described by the Lagrangian, 

L = L1 + 6L t (6.3) 

where 6L describes the coupling3 Of the bosonic field3 to 

the Z. gauge field. In the A0 = 0 gauge, the discrete form 

of 6L is, (see Eqs. (A15) and (~16)), 

2~lj~lci4,j-~3,j)Ar,j + i 

N-l 2 
6L = - 

71 jCl[i~l('i,j+l- 'i,j) 

- ; ($, j+l-$i j)lAr,jl - + (6.4) 
i=3 ' 8 

- 3i j!l(Ar,j'2 

where A 
r,j 

is the Z. field in the r direction at a distance 

r-ja from the monopole. (We omit the superscript 3 used in 

the appendix on A 
IJ') 

In this gauge, the variable3 A 
r,J 

can be treated a3 

dynamical variable3 and their equation3 of motion can be 

integrated if the initial value3 of A 
r,j 

and A 
r,j 

are given. 

Since initially the soliton is at a distance >>l/MZ from the 

core, we can take A r j(to) = ir j(to) = 0. A3 300" a3 the 

soliton enters the region r<l/MZ. the weak field is 

generated with the correct strength. 
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This can be checked in the Ar = 0 gauge, in the small 

coupling limit. This case was considered in Ref. 7, with 

the result, 

2 

I 

J;(s) 
ds 

J;; 
(6.5) 

Ji = -7k [(&4+2(; 
u1 

+ i - ge - ;,)I 
u2 

(6.6) 

which can be derived from Eq. (Al51 by ignoring the last 

term. For free solitons with velocity 5, 

ii = 5 e; I (6.7) 

which is valid if the gauge coupling is sufficiently small. 

The field strength in the two gauges, (Ar and AO 

respectively) should be identical in the limit m + 0, B+l, 

since the mass term breaks the gauge invariance of the weak 

interaction. Using Eqs. (6.6) and (6.7), we can calculate 
1 

the integral in Eq. (6.5) and compare AO with the 

dynamically calculated field strength Ar. For incoming 

solitons starting at position ro, we find that, in the 

limits specified above, the correct field strength is built 

up for all radii smaller than ro, (we use MZ = 0 here). For 

larger radii, we do not get the correct field because of the 
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initial condition A 
r,J 

=o, but this is irrelevant. 

Alternatively, we can remove the “axial” terms in the 

current, (the $ terms in Eq. (6.6)), in which case Eq. (6.5) 

iS exact and the results in the two gauges agree even for 

finite fermion masses. We do not use Eq. (6.5) however, 

since it requires a boundary condition at r=O, which is hard 

to implement when the solitons are near the core. 

In the next subsection, we describe a numerical study 

of the Lagrangians of Eqs. (6.2) and (6.4). 

9. Numerical Results 

At large r the theory is that of four uncoupled 

solito”s with the solution given by Eq. (4.1). The 

effective discrete Lagrangian is shown in Eq. (6.2) and the 

equations of motion are easily integrated numerically as in 

Section V. However, when a distance -l/MZ from the monopole 

is reached, the Lagrangian of Eq. (6.4) must be used for 

numerical integrations, as described above. We make the 

simplifying assumption that the Z. interaction is turned on 

with a theta function at r-l/MZ 

The fermion masses are all taken to be equal and are 

set equal to zero when the Z. interactions are turned on. 

This is because the SU(2jL gauge symmetry forbids fermion 

mass terms in the Lagrangian. l6 We take the coup1 ing 

constant F to be .l, although we find similar results for 

.05<F<l. 
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1 . “1R + “2R + d3L + el 

The effect of the additional strong and electromagnetic 

Abelian Coulomb interactions on the physics near the core is 

expected to be small since the corresponding charges vanish 

near the core. We find that even quantitatively there is 

hardly any visible difference for F<.l. (We use the unified 

SlJt5) coupling constant for all interactions.) In Figure 9, 

we show the effect of these additional interactions, 

(Eq. (6.4)), on the final state of the process u,R + u2R + 

ii 3L + eL + for F-.2, an unrealistically large value. 

The effect of the Z. field is equally small, but the 

fact that we set ml=0 for r<l/MZ is more important. We find 

that solitons enter the region around the core very easily, 

but are sometimes trapped within a radius l/MZ. This happens 

because the sphere at r=l/MZ acts as a barrier. At r=l /M Z’ 

the massless so11 tons moving away from the core have to 

become massive, which costs a finite amount of energy. 

Often the solitons do not pass this barrier, but 

non-topological radiation is emitted during the process. 

After a while the total energy of the field configuration 

within r=l /MZ drops below the threshold for production of 

any of the allowed final states, and the massless solitons 

are trapped. 

The monopole core is not left in one of the ground 

states, but in a state with four oscillating soliton fields. 

The conserved charges of the original incoming solitons are 
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present within r=l /MZ, but not on the core. The correct 

physical interpretation of this phenomenon in the full 

quantum theory is difficult, but since it depends crucially 

on the r-dependence of the soliton mass near the core the 

physical relevance is questionable. 

Despite this phenomenon, the processes u1 R+U2R+d3L+e; 

and 
- + 

‘1 R+~~L+‘~R+~L can still be observed above a certain 

velocity threshold and for small radial separations of the 

incoming solito”s. For example , Figure 9 shows the final 

state of the first process with F=.2 and l/ME=.5. We find 

that Figure 6, showing gth as a function of the separation, 

is essentially unchanged. The threshold velocity is in fact 

slightly lower in the presence of the weak interaction 

effects. A plot very similar to Figure 6 also describes the 

threshold velocity for the second process mentioned above. 

Below these thresholds we do not observe the helicity flip 

process, but the phenomenon described in the previous 

paragraphs. 

2. 
"1R + “1L 

The processes with one incoming soliton are expected to 

proceed via an intermediate state of half solitons, 9.14 

which should materialize into full solitons at r-l /MZ. The 

half solitons are very easily visible, but we find that they 

are more likely to remain trapped than full solito” final 

states. The three soliton final state is reached only for 
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special choices of the four masses and a large velocity of 

the incoming soliton, (e.g. ml=3., m2=l., m3=l., m4=.1, and 

$=.9). 

These results were obtained with F=.l and 1/MZ=.5. The 

full range of relevant mass scales (from me to MZ) can not 

be studied numerically. It is however clear that the 

results of this section will approach those of Section V if 

we could increase MZ/me to a much larger value, so that the 

size of the weak interaction region is much smaller than the 

size of a soliton. 

VII. Heavy Flavors 

Our results thus far involve only one generation of 

fermions. Additional generations could be important since 

they are coupled to the first generation by the anomaly. In 

the massless case this is evident in the selection rule 

(4.5). (Notice that the helicity conserving processes are 

not expected to be sensitive to additional generations, 

since they do not proceed via the anomaly.) However, if the 

additional f ermions are sufficiently heavy ,we expect them 

to decouple. 

We have studied the effect of additional heavy fermions 

from extra generations by adding two solitons, e and f, to 

the model of Section V. There are several ways to choose 

masses for the six solitons (see, for example, Ref. 91, but 

we have concentrated on just one possibility. In our 
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approach, the solitons a,b,c,d all have equal masses, and 

the masses of e and f are equal to each other, but different 

from the others. 

The solitons e and f are coupled by the boundary 

condition at r=O, just as are (a,b) and (c,d). (In 

realistic models, e and f could correspond to charm quarks). 

We study the final state as a function of p=m,/m,, with two 

incoming solitons of type a and b. There are three possible 

final states: 

+ + + + 
aL + bL + aR + b R 

+ + 
‘c +dR R 

(1) 

(2) 

+ 
+ e + + R f R (3) 

For p>>l, (and sufficiently large velocity of the 

incoming solito”s), we expect to see final state (2), since 

the heavy particles e and f should decouple from the 

problem. The system reduces then to the one discussed in 

Sec. V.B. For obvious reasons, we expect final state (3) 

if p<<l. If p=l, modes (2) and (3) are equally attractive, 

and since the system is deterministic, the final state must 

be invariant if the pairs (c,d) and (e,f) are interchanged. 

In other words, modes (2) and (3) are not allowed, since the 

system has no way of choosing between them, and therefore, 

for any velocity, the final state will be (1). 
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A numerical analysis is necessary to determine the 

final state in a given scattering process. We find that 

mode (2) is chosen for p>1.05 and mode (3) for PC.95 , for 

incoming so1itons a and b with rO=2, B=.9, and F=.l. Thus 

the system behaves very much like a four flavor system at 

values of p rather close to 1, long before the heavy flavors 

actually decouple. The details of the final state and the 

threshold velocity are of course influenced by the heavy 

flavors over a much larger range of p. 

The region around p=l has a very complicated structure, 

consisting of many small intervals of p-values in which one 

of the three final states is chosen,bordering On intervals 

in which another final state is preferred for a given 

initial state. There even exists an interval for p>l, in 

which final state (3) is chosen instead of (2) ,although (3) 

requires the formati.on of heavier solitons. 

This interesting region shrinks with increasing N,and 

may disappear in the continuum limit. Since this 

fascinating phenomenon has no relevance for catalysis of 

proton decay we have not investigated this in more detail. 
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VIII. Conclusion 

We have studied the interactions of fermions with a ‘t 

Hoof t-Polyakov monopole in a classical 301iton 

approximation. Our results can be interpreted as classical 

cross sections for production of the different final states. 

We find the dynamical thresholds for the occurrence of a 

given process. The main features of these thresholds as 

functions of several parameters are presented in Sec. V. 

Before we summarize our main conclusions, let us first 

discuss the limitations of this approximation. In the 

absence of the Coulomb term, (see Eq. 3.4), our 

approximation reduces to a system with exactly the same 

physical content as the Dirac equation for fermions in the 

field of a magnetic monopole. This is the system studied in 

Refs. 10, 11 and 17, (apart from the physics at the core). 

Our approach includes the Coulomb fields produced by the 

quarks, which turn out to be extremely impOrtant, and goes 

one step beyond solving the J=O part of the Dirac equation. 

Therefore a calculation of the cross-section in the so1iton 

approximation is at least as justified as using the Dirac 

equation for that purpose. 

Quantum corrections are obviously absent in this 

approximation, but that is not the most serious limitation. 

In the SU(2) model, quantum corrections Will presumably 

modify the theta function thresholds by an exponential 

tunneling behavior below threshold and a resonance-like 

behavior above threshold. In any case, they will not 
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suppress a process that can be observed classically. 

The more serious limitation is the incomplete 

description of weak and strong interaction physics, which 

can only partly be implemented in the SU(2) model. (We are 

only able to include Abelian interactions-- non-diagonal 

interactions are beyond our approximation). Related to this 

is the fact that we have only studied free quarks, ignoring 

the fact that they are confined inside a proton. 

Our main conclusions are: 

1 . All of the processes expected to occur in the field of 

a monopole, (see Table l), have been observed. We have 

understood which processes occur due to the presence of 

the anomaly and which are due to the boundary 

conditions at the monopole core. (See also Ref. 14.) 

No processes have which violate electromagnetic charge 

have been observed for finite values of the coupling 

constants. 

2. The most important baryon number violating processes 

for one generation which we observed are, 

+ - 
a. 

"1R + ‘2R + eL + d3L 

b. 
"1R + d3L + ii 2R + ‘: 

+ - 
c. ‘1R + i2R + eL + d3L 

d. d3L -t e: + ulR + ~2~. 

Processes (c) and Cd) can only occur above a kinematic 

threshold discussed in Section V. 

3. The inclusion of finite f ermion mass terms in the 

Hamiltonian does not affect the qualitative nature of 
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the scattering processes -- monopole catalysis of 

proton decay proceeds as predicted. 

4. we have studied the dependence of the scattering 

processes on the coupling constant, the velocities and 

the spatial separation of the incoming solitons. The 

main features are given in Sec. V. 

5. We have included the additional weak, electromagnetic 

and strong Coulomb energies relevant for SU(5) 

monopol es. We find that their effect on the final 

state is very small. The r-dependence of the effective 

f ermions masses due to the breaking of the weak 

interaction symmetry (or due to QCD-effects) is more 

important, but less well understood. 

6. Additional generations will not have an important 

effect on catalysis of proton decay. 

Although a reliable estimate of the cross-section (or 

rate) for catalysis is still lacking, we have not found any 

effect that would suppress it by many orders of magnitude. 

Processes a and b of point 2 occur in all the circumstances 

which we have studied. The occurrence of c and d is more 

sensitive to the (current or constituent) masses of the 

fermions, and we do not have meaningful conclusions about 

them. 

All B-violating processes require the quark velocities 

to be above certain thresholds. For a small (B-1 Om3) 

relative velocity of the proton and the monopole, the 

relevant velocities are those of the quarks in the proton. 
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The cross section depends on the probability - determined by 

the proton wave function - for the quarks in the proton to 

be in the right region of phase space for one of the 

aforementioned processes. This is a complicated model 

dependent question, which we have not tried to address. 

ACKNOWLEDGEMENTS 

We are grateful to W. Bardeen and A. Sen for valuable 

discussions. 



-39- FERMILAB-Pub-83/43-THY 

APPENDIX 

In this appendix we derive the bosonized two 

dimensional Lagrangian, including a11 Abelian Coulomb 

interactions, for the standard SU(5) model. The derivation 

of the SU(2) part of the Lagrangian can be found in Refs. 1 

and 2 and expressions for the additional Coulomb energies 

are given in Refs. 2 and 7. Since a complete derivation 

has not been presented before and since there are several 

small differences between the available results, we think it 

is useful to present our complete derivation. 

We start from the SU(5) Lagrangian, 

L = -; F= Fuvb 
NV + i$5yuDu$5 

+ i?, oYUD,,d, o (Al 1 

with D =a +A 
II lJ ?J 

A 
u 

= -ig A ; Ta 

F 
Ilv 

= [D 
IJ’ 

DV] = -ig F= T 
uv = 

and J, 
5’ 

$,D are left-handed Weyl-fermions in the CFI and 

Cl01 representations. The normalization of the generators 

is 

Tr(Ta Tb) = ; C, gab (A21 

with Cl = 1 for the fundamental representation. The 
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simplest eg = l/2 monopole is embedded in the SU(2) subgroup 

generated by 

T = 

[ 

0 
0 

+ 
T 

0 (A31 

All other generators can be classified according to 

representations of this SU(2) subgroup. Since the 

bosonization method is not very suitable for off-diagonal 

interactions, we have to restrict ourselves to diagonal 

ones. These generators can be chosen in the following way, 

M1 = 2 1 diag( 1, -1 I 0, 0, 0) 

M2 = 1 diag(-1, -1, 1, 1, 0) 
VT 

M3 = 1 diag(l, 1, 1, 1, -4) (A41 
2Jia 

We will only consider the J=O part of the fermions in 

Eq. (Al). First consider the gauge fields. We choose the 

following parameterization, consistent with spherical 

symmetry with respect to J=L+S+T, 
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3 
A0 = -ic T.n,& + 1 Midi 1 

i-l 

Cl Ai = Ai - i ni[+.n47P + 

A;l = - F(r) 1 (? x n) ' r 

where n=;/jrl, F(O) = 1, and F(m) = 0. 

When Eq. (A5) is substituted into the 

obtains, 

_ 1 Fa Fp”a = 
T !lv 

-+c s eb; - &pl 
2g k=O 

2F2 
+7 cwy - bq2 1 (~6) 

(A5) 

action one 

This can be simplified if it is written in a two dimensional 

notation, 

x" = (t,r) 

F;” = a,A”, - avA; (A7) 

where our metric is (+, -). Then we obtain, 
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vv= = 1 -- k~oF;yFuVk+ 5 A;," . (~8) 
4g2 

This last term vanishes in the limit MX+m, (zero monopole 

size), and will be dropped from now on. 

Now consider the fermions. We are only interested in 

the fermions that interact with the monopole. Since the 

generators Mk are SU(2) singlets, the fermions 

doublet have the same Mk eigenvalue, 

in one SU(2) 

Doublet: [ii;] [“:] [ :j 
Eigenvalue of Ml 0 0 l/2 

flM2 -1 1 0 

Jta"3 -1 -3 2 

The J=O form of the fermion is, 

1 Jli =- CE f 
i 

an. J8 ai 
+ i(:.n) uBEfdil 

[ 

; 
1 

U2 

-l/2 

0 

2 (A9) 

(AlO) 

where a is the spin index, It is the SU(2) gauge index and 

i-l,...,4 labels the four doublets in Eq. (A9). 

Substitution of Eq.(AlO) yields the following action for the 

fermions,18 
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S = -ijdr dt Q;A;) xi (All) 
i=l 

f 
where x = 0 . In this two-dimensional space we define YO=, 

3' 

Y’=ir 
g 

,, and Qt is the Mk eigenvalue of doublet k. 

The bosonized version of the two dimensional f ermion 

Lagrangian defined by Eq. (All) is, 

P$I[$UV”“‘o - $ Q;A;: 
k=l 

+ 2 ,$,$, (Q:)2+pk)l (Al 2) 

The last term is necessary for gauge invariance. l9 Its 

effect is to add an extra A-dependent term to the currents. 

The conserved current.? are, 

J; = -.& Epva 
v,!, $1 

J; = -1 au ; (Q:@,) 
J;; i=l 

+;A;,; (Q;j2 
1=1 

(Al3) 

Since the mass term would be rather awkward in this 

bosonized form, it is convenient to make a canonical 

transformation, 
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‘e = l/2 ($, + e2) + l/2 1(v1-v2)ds 

‘+d = l/2 ($, + @,) - l/2 J(n, - rr2)ds 

ll 
e 

= l/2 h, + T2) + l/2 c+; - $;I 

‘d = l/2 (IT, + n,) - 112 ($; - b2’) (Al41 

and the same with (e,d,1,2) replaced by (u,, u2, 3, 4). 

With these transformations we obtain the f 011owing 

Lagrangian, (including the gauge fields), 

L = 4nr2C- - 1 

4g2 
f Fk Fvv,k, 

kc0 p” 
+ $ ,f (apoi)2 

1-l 

+ 2 A3Apt3 
5l7 lJ 

(A15) 

with, 

J; = -l/2 E uva”($e + +d + 4u + +u ) 
1 2 

J; = -l/2 E uva”(+ 
u2 

- +u ) 
1 

J; = $ Euua”(+e-$d) 

Jz = ---&[C)IVa”(Oe - @d) + 2au(0, + 
1 

4 - +e - @d )I . (Al6) 
u2 

The last term in Eq. (A15) is again necessary for gauge 

invariance. The difference in these gauge terms between 

Eq. (A121 and Eq. (Al5) is due to the transformations from 

Lagrangian to Hamiltonian and back, which are necessary to 
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make the canonical transformation of Eq. (Al4). 

The fields A 0 
v’ 

A:, and A E can be eliminated from the 

Lagrangian since their equations of motion can be solved 

exactly. (This is most conveniently done in the Ar = 0 

gauge. Since the action, after a partial integration, 

depends only quadratically on Ai, this variable can be 

eliminated as in Ref. 2). Then we obtain the following 

interaction Lagrangian, 

Ll = - 

+ ; (oe-@d)21 (Al7) 

The first term is the T 3 Coulomb term introduced by Callan. 
2 

This expression can be made more recognizable by 

writing it in the following way, 

.s2 3 
C& @e 

2 
+ + tJd+ 7 4”, 

2 
+ 7 %12) 

2 
LI = - 81i2r2 

1 
- (c$ ++ 1)’ + c; $ - ; $ j21 
26 "1 “2 "1 U2 

This can finally be written as, 

(Al 8) 

LI = 2r2 - -A- (Qem$ j2 

(Al9) 

where Q,, is the generator of electric charge, h 
3 

and X8 are 
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the usual SU(3) matrices and e=(e 34 ‘$d .$,). 
“1 “2 3 

Furthermore, we have used the well known SU(5) relation e = 

J3/8g. 

The contribution of Jt, (which couples to the Z boson), 

can not be solved exactly, (this is due to the second term 

in the expression for J 
: ( 

see Eq. Al6), which is present 

because the corresponding fermion current in four dimensions 

has an axial vector part). We di Seuss this problem in 

Section VI. 
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Table 1. Possible processes for Nf=4. The pairs (a,b) and 

(c,d) are coupled at r=O. These pairs can represent (e-, 

da) and CL,. u,) or any permutation that does not alter the 

pairing. The mechanisms are: 1) Non-zero mass, 

2) Adler-Bell-Jackiw anomaly, 3) Adler-Bell-Jackiw anomaly 

and non-zero mass, and 4) Boundary conditions at r=O. 

Process 

I. a; + ai 

+ b; + c; + d; 

II. a: + bl + ai + bi 

+ c + + d 
+ 

R R 

IV. aL+cL+ai+ci 

V. a; + bi + ai + bL 

Mechanism 

192 

1 

+ 2ai + CL + dl 3 

+ 2b; + c; + d; 3 



i) 

b) 

1 . 

2. 

3. 

4. 

5. 

6. 
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FIGURE CAPTIONS 

Fig. 1: Solitons corresponding to the poss 

states. 

ible asymptotic 

+ 
Fig. 2: The helicity flip process R The incoming 

+ 
soliton aL has a velocity B=.995 and all of the 

solitons have mass, mi=l. The units on the 

vertical axis are 6. The zero points for a,b,c, 

and d solitons have been shifted vertically by 

1,3,5, and 7 units, respectively. The time of 

each picture is shown in the upper left-hand 

corner. This figure shows three half solitons 

evolving into an aF, soliton. of Eq. 3.4. 

Fig. 3: The transition between a;-rai and aL+bL+ci+di. The 

solid line shows the kinematic boundary and the 

cross hatches the threshold determined by the 

fermion-monopole interactions. Below the CT-033 

al+a 
+ 

and above them a)bL+ci+d 
+ 

hatches R R’ p=ma/mb 

and mb=mc=m d’ Bth is the minimum velocity for 

which ai+bL+ci+d 
+ 
R’ 

Fig. 4: The proton decay process aL+bL+ci+di. The incoming 

sol i tons are traveling at R=.9 and are initially 

separated by a distance 6R=l /2. (In the SU(5) 

model, this process corresponds to 

u +K2L+ei+d 1L 3R.j 

Fig. 5: The dependence of ‘th on the number of lattice 

points N. Bth is determined for two incoming 
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solitons (aL+bL) traveling together. 

Fig. 6: The dependence of Bth on 6R, the SpaCial 

separation of the the incoming solitons. (This 

figure is derived for incoming aL+bL). 

Fig. 7: The dependence of 8th on F, the coupling constant. 

(This figure is derived for incoming aL+bL.) 

Fig. 8: a; +ci +bL +di. The incoming solitons are 

traveling at 8=.9 and are initially separated by a 

distance 6R=l /2. 

+ - 
Fig. 9: Final states for the process ‘1 R+“2R+eL+d3L’ The 

incoming solitons are traveling at 6=.95 and are 

initially separated by a distance 6R=1/2. The 

solid lines include the SU(2) Coulomb 

interactions, (Eq. 3.41, the dashed lines include 

also the QCD Coulomb interactions, (Eq. 6.2), and 

the dashed-dotted lines include both SU(2) and QCD 

interactions plus the effects of turning on the ZO 

interactions, (Eq. 6.41, at r=.5. The coupling 

constant F is .2. 
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